Phage-derived peptides as new epitopes of breast cancer

Autores

Palavras-chave:

Breast Cancer, Phage Display, Peptides, Diagnosis, Epitopes, Docking

Resumo

Epidemiological data on death rates and incidence of Breast Cancer (BC) are still alarming, highlighting the need for new strategies of diagnosis and therapy. Our group has previously described a new antibody in Fab format, FabC4, for diagnostics, staging, and prognosis of BC. Objectives: To map the FabC4 epitopes and evaluate those for their diagnostic potential. Methods: A Phage Display-based assay against FabC4 was performed to identify and characterize peptides as new epitopes of BC. The selected peptides were also evaluated for their reactivity to patient sera through ELISA assay. We finally conducted molecular docking to assess the best conformation of FabC4-epitopes. Results: Four peptides-displaying phages differentiated sera samples from 50 patients with BC, benign disease, and from healthy women. The corresponding peptides were chemically synthesized (pA5, pA7, pC4 and pD6) and bound to FabC4. The peptide pD6 differentiated the neoplastic samples from benign and healthy sera. Molecular docking analyzes confirmed the interaction between FabC4 and the selected peptides. Conclusion: We have successfully mapped the FabC4 epitopes with diagnostic potential, opening new avenues for the understanding and treatment of BC.

Referências

Chen, Z.; Xu, L.; Shi, W.; Zeng, F.; Zhuo, R.; Hao, X.; Fan, P. Trends of female and male breast cancer incidence at the global, regional, and national levels, 1990–2017. Breast Cancer Res. Treat. 2020, 180, 481–490, doi:10.1007/s10549-020-05561-1.

Mokhatri-Hesari, P.; Montazeri, A. Health-related quality of life in breast cancer patients: Review of reviews from 2008 to 2018. Health Qual. Life Outcomes 2020, 18, 1–25, doi:10.1186/s12955-020-01591-x.

Hasanpourghadi, M.; Pandurangan, A.K.; Mustafa, M.R. Modulation of oncogenic transcription factors by bioactive natural products in breast cancer. Pharmacol. Res. 2018, 128, 376–388, doi:10.1016/J.PHRS.2017.09.009.

Denkert, C.; Liedtke, C.; Tutt, A.; von Minckwitz, G. Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. Lancet 2017, 389, 2430–2442, doi:10.1016/S0140-6736(16)32454-0.

Mimmi, S.; Maisano, D.; Quinto, I.; Iaccino, E. Phage Display: An Overview in Context to Drug Discovery. Trends Pharmacol. Sci. 2019, 40, 87–91, doi:10.1016/J.TIPS.2018.12.005.

Frenzel, A.; Schirrmann, T.; Hust, M. Phage display-derived human antibodies in clinical development and therapy. MAbs 2016, 8, 1177–1194, doi:10.1080/19420862.2016.1212149.

Wu, C.H.; Liu, I.J.; Lu, R.M.; Wu, H.C. Advancement and applications of peptide phage display technology in biomedical science. J. Biomed. Sci. 2016.

Nixon, A.E.; Sexton, D.J.; Ladner, R.C. Drugs derived from phage display. MAbs 2014, 6, 73–85, doi:10.4161/mabs.27240.

Nobel The Nobel Prize in Chemistry 2018 was divided, one half awarded to Frances H. Arnold “for the directed evolution of enzymes”, the other half jointly to George P. Smith and Sir Gregory P. Winter “for the phage display of peptides and antibodies.” Available online: https://www.nobelprize.org/prizes/chemistry/2018/summary/ (accessed on Feb 12, 2019).

Araújo, T.G.; Paiva, C.E.; Rocha, R.M.; Maia, Y.C.P.; Sena, A.A.S.; Ueira-Vieira, C.; Carneiro, A.P.; Almeida, J.F.; de Faria, P.R.; Santos, D.W.; et al. A novel highly reactive Fab antibody for breast cancer tissue diagnostics and staging also discriminates a subset of good prognostic triple-negative breast cancers. Cancer Lett. 2014, doi:10.1016/j.canlet.2013.09.029.

Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254, doi:10.1016/0003-2697(76)90527-3.

Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85, doi:10.1016/0003-2697(85)90442-7.

Barbas, C.F. et al Phage Display: a laboratory manual; 2001; ISBN 9780879697402.

Costa, L.E.; Goulart, L.R.; Pereira, N.C. de J.; Lima, M.I.S.; Duarte, M.C.; Martins, V.T.; Lage, P.S.; Menezes-Souza, D.; Ribeiro, T.G.; Melo, M.N.; et al. Mimotope-Based Vaccines of Leishmania infantum Antigens and Their Protective Efficacy against Visceral Leishmaniasis. PLoS One 2014, 9, e110014, doi:10.1371/journal.pone.0110014.

Xu, J.; McPartlon, M.; Li, J. Improved protein structure prediction by deep learning irrespective of co-evolution information. Nat. Mach. Intell. 2021, 1–9, doi:10.1038/s42256-021-00348-5.

Colovos, C.; Yeates, T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 1993, 2, 1511–1519, doi:10.1002/pro.5560020916.

Pontius, J.; Richelle, J.; Wodak, S.J. Deviations from standard atomic volumes as a quality measure for protein crystal structures. J. Mol. Biol. 1996, 264, 121–136, doi:10.1006/jmbi.1996.0628.

Anderson, R.J.; Weng, Z.; Campbell, R.K.; Jiang, X. Main-chain conformational tendencies of amino acids. Proteins Struct. Funct. Bioinforma. 2005, 60, 679–689, doi:10.1002/prot.20530.

Néron, B.; Ménager, H.; Maufrais, C.; Joly, N.; Maupetit, J.; Letort, S.; Carrere, S.; Tuffery, P.; Letondal, C. Mobyle: A new full web bioinformatics framework. Bioinformatics 2009, 25, 3005–3011, doi:10.1093/bioinformatics/btp493.

Alland, C.; Moreews, F.; Boens, D.; Carpentier, M.; Chiusa, S.; Lonquety, M.; Renault, N.; Wong, Y.; Cantalloube, H.; Chomilier, J.; et al. RPBS: A web resource for structural bioinformatics. Nucleic Acids Res. 2005, 33, W44–W49, doi:10.1093/nar/gki477.

Zhou, P.; Jin, B.; Li, H.; Huang, S.-Y. HPEPDOCK: a web server for blind peptide–protein docking based on a hierarchical algorithm. Nucleic Acids Res. 2018, 46, W443–W450, doi:10.1093/nar/gky357.

Hajian-Tilaki, K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Casp. J. Intern. Med. 2013, 4, 627–35.

Yam, C.; Mani, S.A.; Moulder, S.L. Targeting the Molecular Subtypes of Triple Negative Breast Cancer: Understanding the Diversity to Progress the Field. Oncologist 2017, 22, 1086–1093, doi:10.1634/theoncologist.2017-0095.

Llinàs-Arias, P.; Esteller, M. Epigenetic inactivation of tumour suppressor coding and non-coding genes in human cancer: an update. Open Biol. 2017, 7, 170152, doi:10.1098/rsob.170152.

Moreira, G.M.S.G.; Fühner, V.; Hust, M. Epitope Mapping by Phage Display. In Methods in molecular biology (Clifton, N.J.); Humana Press, New York, NY, 2018; Vol. 1701, pp. 497–518.

Christiansen, A.; Kringelum, J. V.; Hansen, C.S.; Bøgh, K.L.; Sullivan, E.; Patel, J.; Rigby, N.M.; Eiwegger, T.; Szépfalusi, Z.; Masi, F. de; et al. High-throughput sequencing enhanced phage display enables the identification of patient-specific epitope motifs in serum. Sci. Rep. 2015, 5, 12913, doi:10.1038/srep12913.

Steiner, D.; Forrer, P.; Stumpp, M.T.; Plückthun, A. Phage display using cotranslational translocation of fusion polypeptides 2007.

Suphioglu, C. Mimtags: The use of phage display technology to produce novel protein-specific probes. Immunome Res Cenk Suphioglu Immunome Res 2016, 12, doi:10.4172/1745-7580.C1.005.

Ciric, M.; Ng, F.; Rakonjac, J.; Gagic, D. Metasecretome phage display. In Methods in Molecular Biology; Humana Press, New York, NY, 2018; Vol. 1701, pp. 519–534.

Feliciano, N.D.; Ribeiro, V. da S.; Santos, F. de A.A.; Fujimura, P.T.; Gonzaga, H.T.; Goulart, L.R.; Costa-Cruz, J.M. Bacteriophage-Fused Peptides for Serodiagnosis of Human Strongyloidiasis. PLoS Negl. Trop. Dis. 2014, 8, e2792, doi:10.1371/journal.pntd.0002792.

Nobrega, F.L.; Ferreira, D.; Martins, I.M.; Suarez-Diez, M.; Azeredo, J.; Kluskens, L.D.; Rodrigues, L.R. Screening and characterization of novel specific peptides targeting MDA-MB-231 claudin-low breast carcinoma by computer-aided phage display methodologies. BMC Cancer 2016, 16, 881, doi:10.1186/s12885-016-2937-2.

Kumar, V.; Yu, J.; Phan, V.; Tudor, I.C.; Peterson, A.; Uppal, H. Androgen Receptor Immunohistochemistry as a Companion Diagnostic Approach to Predict Clinical Response to Enzalutamide in Triple-Negative Breast Cancer. JCO Precis. Oncol. 2017, 1–19, doi:10.1200/PO.17.00075.

Obuchowski, N.A.; Bullen, J.A. Receiver operating characteristic (ROC) curves: review of methods with applications in diagnostic medicine. Phys. Med. Biol. 2018, 63, 07TR01, doi:10.1088/1361-6560/aab4b1.

Yuriev, E.; Ramsland, P.A. Latest developments in molecular docking: 2010-2011 in review. J. Mol. Recognit. 2013, 26, 215–239.

Yuriev, E.; Holien, J.; Ramsland, P.A. Improvements, trends, and new ideas in molecular docking: 2012-2013 in review. J. Mol. Recognit. 2015, 28, 581–604.

Downloads

Publicado

2021-07-25

Como Citar

Alvos, D. A., Vecchi, L., Ribeiro, M. A., Oliveira, F. M., & Araújo, T. (2021). Phage-derived peptides as new epitopes of breast cancer. Interação, 23(1), 166–186. Recuperado de http://www.interacao.org/index.php/edicoes/article/view/138

Edição

Seção

Artigos